1. If \(y = x \sin 2x \), prove that \(x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + \frac{2y}{x} + 4xy = 0 \)

2. Given that \(y = e^x - e^{-x} \), show that \(\left(\frac{dy}{dx} \right)^2 - y^2 - 4 = 0 \)

3. Given that \(v = \sqrt{\sin u} \), show that \(4v^3 \frac{d^2v}{du^2} + v^4 + 1 = 0 \)

4. Given \(y = e^{-x} \cos x \), show that \(\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 2y = 0 \).

5. Given that \(y = \frac{\sin kx}{1 + \cos kx} \), where \(k \) is a positive integer, show that \(\sin kx \frac{d^2y}{dx^2} = k^2 y^2 \).

6. Given \(y(2 - x) = 3 \), show that \(3 \frac{d^2y}{dx^2} - 2y \frac{dy}{dx} = 0 \).

7. Given \(y = (1 + 4x)e^{-2x} \), prove that \(\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + 4y = 0 \).

8. Let \(y = \sqrt{\cos x} \), show that \(4y^3 \frac{d^2y}{dx^2} + y^4 + 1 = 0 \).

9. Given \((1 + x^2)y^2 = 1 - x^2 \), show that \(\left(\frac{dy}{dx} \right)^2 = \frac{1 - y^4}{1 - x^2} \).

10. Form a differential equation from \(y = Ax^3 + \frac{B}{x^2} - 6x \), \(x > 0 \).

11. Form a differential equation from \(y = Ax^3 + \frac{B}{x^2} - 6 \), \(x > 0 \).

12. \(y \sin^{-1}3x = \sqrt{1 - 9x^2} \), show that \((1 - 9x^2) \frac{dy}{dx} + 3y^2 + 9xy = 0 \)

13. Given that \(y = x^n[A \cos(\ln x) + B \sin(\ln x)] \), where \(A \) and \(B \) are constants, show that

\[x^2 \frac{d^2y}{dx^2} + (1 - 2n)x \frac{dy}{dx} + (1 + n^2)y = 0 \]

14. Given that \(y = \sin^{-1}x \), show that \((1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0 \)

15. Let \(y = 5e^{(\sqrt{3}-2)x} + 3e^{-(\sqrt{3}+2)x} \), show that \(\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} + y = 0 \).