Rearrangement Inequality

Yue Kwok Choy

The rearrangement inequality (also known as permutation inequality) is easy to understand and yet a powerful tool to handle inequality problems.

Definition

Let \(a_1 \leq a_2 \leq \ldots \leq a_n \) and \(b_1 \leq b_2 \leq \ldots \leq b_n \) be any real numbers.

(a) \(S = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n \) is called the Sorted sum of the numbers.

(b) \(R = a_1 b_n + a_2 b_{n-1} + \ldots + a_n b_1 \) is called the Reversed sum of the numbers.

(c) Let \(c_1, c_2, \ldots, c_n \) be any permutation of the numbers \(b_1, b_2, \ldots, b_n \).

\[P = a_1 c_1 + a_2 c_2 + \ldots + a_n c_n \]

is called the Permutated sum of the numbers.

Rearrangement inequality

\[S \geq P \geq R \]

Proof

(a) Let \(P(n) \) be the proposition : \(S \geq P \).

\[P(1) \text{ is obviously true.} \]

Assume \(P(k) \) is true for some \(k \in \mathbb{N} \).

For \(P(k + 1) \), Since the \(c \)'s are the permutations of the \(b \)'s, suppose \(b_{k+1} = c_i \) and \(c_{k+1} = b_j \)

\[(a_{k+1} - a_i)(b_{k+1} - b_j) \geq 0 \]

\[\Rightarrow a_i b_j + a_{k+1} b_{k+1} - a_i b_{k+1} - a_{k+1} b_j \]

\[\Rightarrow a_i b_j + a_{k+1} b_{k+1} \geq a_i c_i + a_{k+1} c_{k+1} \]

So in \(P \), we may switch \(c_i \) and \(c_{k+1} \) to get a possibly larger sum.

After switching of these terms, we come up with the inductive hypothesis \(P(k) \).

\[\therefore P(k + 1) \text{ is also true.} \]

By the principle of mathematical induction, \(P(n) \) is true \(\forall n \in \mathbb{N} \).

(b) The inequality \(P \geq R \) follows easily from \(S \geq P \) by replacing \(b_1 \leq b_2 \leq \ldots \leq b_n \)

by \(-b_n \geq -b_{n-1} \geq \ldots \geq -b_1 \).

Note:

(a) If \(a_i \)'s are strictly increasing, then equality holds \(S = P = R \) if and only if the \(b_i \)'s are all equal.

(b) Unlike most inequalities, we do not require the numbers involved to be positive.

Corollary 1

Let \(a_1, a_2, \ldots, a_n \) be real numbers and \(c_1, c_2, \ldots, c_n \) be its permutation. Then

\[a_1^2 + a_2^2 + \ldots + a_n^2 \geq a_1 c_1 + a_2 c_2 + \ldots + a_n c_n \]

Corollary 2

Let \(a_1, a_2, \ldots, a_n \) be positive real numbers and \(c_1, c_2, \ldots, c_n \) be its permutation. Then

\[\frac{c_1}{a_1} + \frac{c_2}{a_2} + \ldots + \frac{c_n}{a_n} \geq n \]

The rearrangement inequality can be used to prove many famous inequalities. Here are some of the highlights.
Arithmetic Mean - Geometric Mean Inequality (A.M. ≥ G.M.)

Let \(x_1, x_2, \ldots, x_n \) be positive numbers. Then \[\frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n}. \]

Equality holds if and only if \(x_1 = x_2 = \ldots = x_n \).

Proof Let \(G = \sqrt[n]{x_1 x_2 \ldots x_n} \), \(a_1 = \frac{x_1}{G} \), \(a_2 = \frac{x_2}{G^2} \), \ldots, \(a_n = \frac{x_n}{G^n} = 1 \).

By corollary 2, \(n \leq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \ldots + \frac{a_n}{a_1} = \frac{x_1}{G} + \frac{x_2}{G} + \ldots + \frac{x_1}{G} \iff \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \)

Equality holds \(\iff \ a_1 = a_2 = \ldots = a_n \iff x_1 = x_2 = \ldots = x_n \).

Geometric Mean –Harmonic Mean Inequality (G.M. ≥ H.M.)

Let \(x_1, x_2, \ldots, x_n \) be positive numbers. Then \[\sqrt[n]{x_1 x_2 \ldots x_n} \geq \frac{1}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}}. \]

Proof Define \(G \) and \(a_1, a_2, \ldots, a_n \) similarly as in the proof of A.M. – G.M.

By Corollary 2, \(n \leq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \ldots + \frac{a_n}{a_1} = \frac{G}{x_1} + \frac{G}{x_2} + \ldots + \frac{G}{x_n} \) which then gives the result.

Root Mean Square - Arithmetic Mean Inequality (R.M.S. ≥ A.M.)

Let \(x_1, x_2, \ldots, x_n \) be numbers. Then \[\sqrt[n]{x_1^2 + x_2^2 + \ldots + x_n^2} \geq \frac{x_1 + x_2 + \ldots + x_n}{n}. \]

Proof By Corollary 1, we cyclically rotate \(x_i \),

\[x_1^2 + x_2^2 + \ldots + x_n^2 = x_1 x_1 + x_2 x_2 + \ldots + x_n x_n \]
\[x_1^2 + x_2^2 + \ldots + x_n^2 \geq x_1 x_2 + x_2 x_3 + \ldots + x_n x_1 \]
\[x_1^2 + x_2^2 + \ldots + x_n^2 \geq x_1 x_3 + x_2 x_4 + \ldots + x_n x_2 \]
\[\ldots \]
\[x_1^2 + x_2^2 + \ldots + x_n^2 \geq x_1 x_n + x_2 x_{n-1} + \ldots + x_n x_1 \]

Adding all inequalities together, we have \(n(x_1^2 + x_2^2 + \ldots + x_n^2) \geq (x_1 + x_2 + \ldots + x_n)^2 \)

Result follows. Equality holds \(\iff x_1 = x_2 = \ldots = x_n \).

Cauchy –Bunyakovskii – Schwarz inequality (CBS inequality)

Let \(a_1, a_2, \ldots, a_n \); \(b_1, b_2, \ldots, b_n \) be real numbers.

Then \((a_1 b_1 + a_2 b_2 + \ldots + a_n b_n)^2 \leq (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2) \)

Proof The result is trivial if \(a_1 = a_2 = \ldots = a_n = 0 \) or \(b_1 = b_2 = \ldots = b_n = 0 \). Otherwise, define \(A = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2} \), \(B = \sqrt{b_1^2 + b_2^2 + \ldots + b_n^2} \)

Since both \(A \) and \(B \) are non-zero, we may let \(x_i = \frac{a_i}{A} \), \(x_{ni} = \frac{b_i}{B} \) \(\forall 1 \leq i \leq n \).
By Corollary 1,
\[2 = \frac{a_1^2 + a_2^2 + \ldots + a_n^2}{A^2} + \frac{b_1^2 + b_2^2 + \ldots + b_n^2}{B^2} \]
\[\geq x_1x_{n+1} + x_1x_{n+2} + \ldots + x_n + x_2x_n + x_{n+1}x_1 + x_{n+2}x_1 + x_{n+2}x_2 + \ldots + x_{2n}x_n \]
\[= 2(a_1b_1 + a_2b_2 + \ldots + a_nb_n) \]
\[\Longleftrightarrow (a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \leq (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2) \]
Equality holds \[\Longleftrightarrow x_i = x_{n+i} \Longleftrightarrow a_iB = b_iA \quad \forall 1 \leq i \leq n. \]

Chebyshev's inequality

Let \[x_1 \leq x_2 \leq \ldots \leq x_n \] and \[y_1 \leq y_2 \leq \ldots \leq y_n \] be any real numbers.

Then
\[x_1y_1 + x_2y_2 + \ldots + x_ny_n \geq \frac{(x_1 + x_2 + \ldots + x_n)(y_1 + y_2 + \ldots + y_n)}{n} \]
\[\geq x_1y_n + x_2y_{n-1} + \ldots + x_ny_1 \]

Proof By Rearrangement inequality, we cyclically rotate \(x_i \) and \(y_i \),
\[x_1y_1 + x_2y_2 + \ldots + x_ny_n = x_1y_1 + x_2y_2 + \ldots + x_ny_n \geq x_1y_n + x_2y_{n-1} + \ldots + x_ny_1 \]
\[\ldots \geq \ldots \geq \ldots \]
\[x_1y_1 + x_2y_2 + \ldots + x_ny_n \geq x_1y_n + x_2y_{n-1} + \ldots + x_ny_1 = x_1y_n + x_2y_{n-1} + \ldots + x_ny_1 \]

Adding up the inequalities and divide by \(n \), we get our result.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Hint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Find the minimum of (\frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x}, 0 < x < \frac{\pi}{2})</td>
<td>Consider ((\sin^3 x, \cos^3 x), \left(\frac{1}{\sin x}, \frac{1}{\cos x} \right))</td>
</tr>
<tr>
<td>2. Proof: (i) (a^2 + b^2 + c^2 \geq ab + bc + ca)</td>
<td>For (i) and questions below, Without lost of generality, let (a \leq b \leq c) Consider ((a, b, c), (a^{n-1}, b^{n-1}, c^{n-1}))</td>
</tr>
<tr>
<td>3. Proof: (\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \geq \frac{a + b + c}{abc})</td>
<td>Consider (\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \right), \left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \right))</td>
</tr>
<tr>
<td>4. Proof: (\frac{a}{b^2} + \frac{b}{c^2} + \frac{c}{a^2} \geq \frac{a + b + c}{abc})</td>
<td>Consider (\left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a} \right), \left(\frac{a}{b}, \frac{b}{c}, \frac{c}{a} \right))</td>
</tr>
<tr>
<td>5. Proof: (\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \geq a + b + c)</td>
<td>Consider (\left(a^2, b^2, c^2 \right), \left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \right))</td>
</tr>
<tr>
<td>6. Proof: If (a, b, c > 0) and (n \in \mathbb{N}) then (\frac{a^n}{b+c} + \frac{b^n}{c+a} + \frac{c^n}{a+b} \geq \frac{a^{n-1} + b^{n-1} + c^{n-1}}{2})</td>
<td>Consider (\left(a^n, b^n, c^n \right), \left(\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} \right))</td>
</tr>
<tr>
<td>7. Proof: If (a, b, c > 0), then (a^ib^jc^k \geq (abc)^{\frac{a+b+c}{3}})</td>
<td>Consider ((a, b, c), (\log a, \log b, \log c)) and use Chebyshev's inequality</td>
</tr>
</tbody>
</table>